314 research outputs found

    Dissolution in a field

    Full text link
    We study the dissolution of a solid by continuous injection of reactive ``acid'' particles at a single point, with the reactive particles undergoing biased diffusion in the dissolved region. When acid encounters the substrate material, both an acid particle and a unit of the material disappear. We find that the lengths of the dissolved cavity parallel and perpendicular to the bias grow as t^{2/(d+1)} and t^{1/(d+1)}, respectively, in d-dimensions, while the number of reactive particles within the cavity grows as t^{2/(d+1)}. We also obtain the exact density profile of the reactive particles and the relation between this profile and the motion of the dissolution boundary. The extension to variable acid strength is also discussed.Comment: 6 pages, 6 figures, 2-column format, for submission to PR

    Associations of ultra-processed food intake with maternal weight change and cardiometabolic health and infant growth

    Get PDF
    BACKGROUND: Excessive intake of ultra-processed foods, formulated from substances extracted from foods or derived from food constituents, may be a modifiable behavioral risk factor for adverse maternal and infant health outcomes. Prior work has predominately examined health correlates of maternal ultra-processed food intake in populations with substantially lower ultra-processed food intake compared to the US population. This longitudinal study investigated relations of ultra-processed food intake with maternal weight change and cardiometabolic health and infant growth in a US cohort. METHODS: Mothers in the Pregnancy Eating Attributes Study were enrolled at ≀12 weeks gestation and completed multiple 24-Hour Dietary Recalls within six visit windows through one-year postpartum (458 mothers enrolled, 321 retained at one-year postpartum). The NOVA (not an acronym) system categorized food and underlying ingredient codes based on processing level. Maternal anthropometrics were measured throughout pregnancy and postpartum, and infant anthropometrics were measured at birth and ages 2 months, 6 months, and 1 year. Maternal cardiometabolic markers were analyzed from blood samples obtained during the second and third trimesters. RESULTS: Holding covariates and total energy intake constant, a 1-SD greater percent energy intake from ultra-processed foods during pregnancy was associated with 31% higher odds of excessive gestational weight gain (p = .045, 95% CI [1.01, 1.70]), 0.68±0.29 mg/L higher c-reactive protein during pregnancy (p = .021, 95% CI [0.10, 1.26]), 6.7±3.4% greater gestational weight gain retained (p = .049, 95% CI [0.03, 13.30]), and 1.09±0.36 kg greater postpartum weight retention (p = .003, 95% CI [0.38, 1.80]). No other significant associations emerged. CONCLUSIONS: Ultra-processed food intake during pregnancy may be a modifiable behavioral risk factor for adverse maternal weight outcomes and inflammation. Randomized controlled trials are needed to test whether targeting ultra-processed food intake during pregnancy may support optimal maternal health. TRIAL REGISTRATION: Clinicaltrials.gov. Registration ID - NCT02217462. Date of registration - August 13, 2014

    Is the Sun Embedded in a Typical Interstellar Cloud?

    Full text link
    The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at International Space Sciences Institute, October 200

    Conformal mapping methods for interfacial dynamics

    Full text link
    The article provides a pedagogical review aimed at graduate students in materials science, physics, and applied mathematics, focusing on recent developments in the subject. Following a brief summary of concepts from complex analysis, the article begins with an overview of continuous conformal-map dynamics. This includes problems of interfacial motion driven by harmonic fields (such as viscous fingering and void electromigration), bi-harmonic fields (such as viscous sintering and elastic pore evolution), and non-harmonic, conformally invariant fields (such as growth by advection-diffusion and electro-deposition). The second part of the article is devoted to iterated conformal maps for analogous problems in stochastic interfacial dynamics (such as diffusion-limited aggregation, dielectric breakdown, brittle fracture, and advection-diffusion-limited aggregation). The third part notes that all of these models can be extended to curved surfaces by an auxilliary conformal mapping from the complex plane, such as stereographic projection to a sphere. The article concludes with an outlook for further research.Comment: 37 pages, 12 (mostly color) figure

    Co/Ni Ratio Between 0.8 - 5.0 GeV/nucleon from the TIGER-2001 Flight

    Get PDF
    The Trans-Iron Galactic Element Recorder (TIGER) was launched in December 2001 and 2003 from McMurdo, Antarctica and was designed to observe elements ranging from over an extended energy range. Observations of radioactive isotopes produced during explosive nucleosynthesis such as Ni that decay only through electron capture provide important constraints on the delay between nucleosynthesis and the acceleration of galactic cosmic rays (GCRs). The isotopes of Co and Ni at low energies, in particular, the observations of the Ni and Co from the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer, indicate a significant time delay (7.6 10 yr) between GCR nucleosynthesis and acceleration. While TIGER is not able to resolve isotopes, observations of the elemental abundances of Co and Ni at high energies further constrain models for the acceleration and propagation of GCRs. The 2001 2003 flights of TIGER lasted a total of 50 days and collected sufficient statistics to study the Co/Ni elemental ratio over a wide range in energies. We present the elemental ratio of Co/Ni in galactic cosmic rays between 0.8-5.0 GeV/nucleon and compare these results with previous measurements and models for cosmic-ray propagation

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure

    eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV

    Full text link
    Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure

    Measurement of the Deuteron Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Full text link
    Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the "duality" phenomenon in the F2 structure function
    • 

    corecore